

dj-pagination Documentation

See also

To get started quickly see Usage

See also

See what’s new in version_2_3_3

Features

	Quickly create nice-looking paginated lists without altering your views

	Support for multiple lists per page

	Support for using custom templates for each pagination

Indices and tables

	Installation
	Prerequisites

	Installation Options

	Usage
	How to use dj-pagination

	Custom pagination templates

	Multiple paginations per page

	A Note About Uploads

	Optional Settings

	Version History
	Version 2.4.0

	Version 2.3.3

	Version 2.3.2

	Version 2.3.1

	Version 2.3.0

	Version 2.0.4

	Version 2.0.2

	Version 2.0.1

	Version 2.0

	Version 1.0.7

	Index

	Module Index

	Search Page

Installation

Prerequisites

This package requires django 1.8+. It is not tested on earlier versions and may
not work properly there.

To build the documentation from source you will need sphinx.

Installation Options

There are several installation options available:

	using Python Package Index, this package is being actively maintained and
published in the Python Package Index [http://http://pypi.python.org]. You
can install it if you have pip [http://pip.openplans.org/] tool using just one line:

pip install dj-pagination

	or installing the development version:

git clone git@github.com:pydanny/dj-pagination.git
cd dj-pagination
python setup.py develop

Usage

How to use dj-pagination

dj-pagination allows for easy HTML-based pagination without modifying
your views.

There are really 5 steps to setting it up with your projects (not including
installation, which is covered in Installation.)

	List this application in the INSTALLED_APPS portion of your settings
file. Your settings file might look something like:

INSTALLED_APPS = (
 # ...
 'dj_pagination',
)

	Install the pagination middleware. Your settings file might look something
like:

MIDDLEWARE = (
 # ...
 'dj_pagination.middleware.PaginationMiddleware',
)

or MIDDLEWARE_CLASSES for Django <1.10.

	If it’s not already added in your setup, add the request context processor.
Note that context processors are set by default implicitly, so to set them
explicitly, you need to copy and paste this code into your under
the value TEMPLATE_CONTEXT_PROCESSORS:

("django.core.context_processors.auth",
"django.core.context_processors.debug",
"django.core.context_processors.i18n",
"django.core.context_processors.media",
"django.core.context_processors.request")

	Add this line at the top of your template to load the pagination tags:

{% load pagination_tags %}

	Decide on a variable that you would like to paginate, and use the
autopaginate tag on that variable before iterating over it. This could
take one of two forms (using the canonical object_list as an example
variable):

{% autopaginate object_list %}

This assumes that you would like to have the default 20 results per page.
If you would like to specify your own amount of results per page, you can
specify that like so:

{% autopaginate object_list 10 %}

Note that this replaces object_list with the list for the current page, so
you can iterate over the object_list like you normally would.

If you are using template {% block %} tags, the autopaginate tag must
exist in the same {% block %} where you access the paginated
object_list.

In general the full syntax is:

autopaginate QUERYSET [PAGINATE_BY] [ORPHANS] [as NAME]

	Now you want to display the current page and the available pages, so
somewhere after having used autopaginate, use the paginate inclusion tag:

{% paginate %}

This does not require any arguments, but does assume that you have already
called autopaginate, so make sure to do so first.

That’s it! You have now paginated object_list and given users of the site
a way to navigate between the different pages–all without touching your views.

Custom pagination templates

By default the objects will be paginated using a helper template
“pagination/pagination.html”. You can change this with an argument to
paginate.

In general the full syntax is:

paginate [using "TEMPLATE"]

For example, to paginate posts on a hypothetical blog page you could use
something like this:

{% autopaginate posts pagesize %}
{% paginate using "pagination/blog/post.html" %}

The default pagination template is contained in the
pagination/pagination.html file inside the distribution. You could extend
it and only customize the parts you care about. Please inspect the template to
see the blocks it defines that you could customize.

Multiple paginations per page

You can use autopaginate/paginate multiple times in the same template. The only
requirement is to call autopaginate before calling paginate. That is, paginate
acts on the most recent call to autopaginate.

A Note About Uploads

It is important, when using dj-pagination in conjunction with file
uploads, to be aware of when request.page is accessed. As soon as
request.page is accessed, request.upload_handlers is frozen and cannot
be altered in any way. It’s a good idea to access the page attribute on
the request object as late as possible in your views.

Optional Settings

In dj-pagination, there are no required settings. There are,
however, a small set of optional settings useful for changing the default
behavior of the pagination tags. Here’s an overview:

	PAGINATION_DEFAULT_PAGINATION

	The default amount of items to show on a page if no number is specified.
Defaults to 20

	PAGINATION_DEFAULT_WINDOW

	The number of items to the left and to the right of the current page to
display (accounting for ellipses). Defaults to 4.

	PAGINATION_DEFAULT_MARGIN

	FIXME: This needs to be documented.

	PAGINATION_DEFAULT_ORPHANS

	The number of orphans allowed. According to the Django documentation,
orphans are defined as “The minimum number of items allowed on the last
page, defaults to zero.”

	PAGINATION_INVALID_PAGE_RAISES_404

	Determines whether an invalid page raises an Http404 or just sets the
invalid_page context variable. True does the former and False
does the latter. Defaults to False

	PAGINATION_DISPLAY_PAGE_LINKS

	If set to False, links for single pages will not be displayed. Defaults to True.

	PAGINATION_PREVIOUS_LINK_DECORATOR

	An HTML prefix for the previous page link; the default value is ‹‹.

	PAGINATION_NEXT_LINK_DECORATOR

	An HTML postfix for the next page link; the default value is ››.

	PAGINATION_DISPLAY_DISABLED_PREVIOUS_LINK

	If set to False, the previous page link will not be displayed if there’s
no previous page. Defaults to False.

	PAGINATION_DISPLAY_DISABLED_NEXT_LINK

	If set to False, the next page link will not be displayed if there’s no
next page. Defaults to False.

	PAGINATION_DISABLE_LINK_FOR_FIRST_PAGE

	If set to False, the first page will have ?page=1 link suffix in
pagination displayed, otherwise is omitted. Defaults to True.

Version History

Version 2.4.0

	Markdown readme

	Formal support for Django 2.0 and 2.1

	Remove support for unsupported versions of Python and Django

Version 2.3.3

	Formal support for Django 2.0 and 2.1

	Remove support for unsupported versions of Python and Django

Version 2.3.2

Fixed extras_require for py2/3 differences

Version 2.3.1

use extras_require for py2/3 differences

Version 2.3.0

Add request object to context

Version 2.0.4

This is a micro release to push minor fixes to a PyPI release.

Version 2.0.2

This is an another micro release. There are no code changes (apart from
setup.py). The only change is to make it pip-friendly by using new integration
mode with versiontools.

Version 2.0.1

This is a micro release. There are no code changes so there is no need to
upgrade. The only changes are to documentation and infrastructure files.

The following changes are included:

	Improve documentation for using custom pagination templates

	Document multiple paginations per page

	Use correct template name in do_paginate docstring

	Provide correct link to installation instructions

	Fix documentation referencing all project name

	Ignore vim swap files

	Add templates from the test project to MANIFEST.in

Version 2.0

	Revived the project as a fork of
git://github.com/ericflo/django-pagination.git. The project now has a new
maintainer (Zygmunt Krynicki) and a new home (on pypi and launchpad).

	Merged a lot of branches of the old project. In general this was made to show
people “here is the new good stuff” and to get as much contributions, back
into the trunk, as possible.

	Merge a lot of translations: de, es, fr, it, nn, no, pl, pt, pt_BR, ru and
tr. Translations are still in a bad state (they are not built automatically,
they are in incorrect place) but the first step is done.

	Add support for custom pagination templates. You can now use the optional
argument on paginate to use different template:

{% autopaginate obj_list %}
...
{% paginate using "something/custom_template.html" %}

	Pagination template has support for specific blocks. Those blocks are
‘previouslink’, ‘pagelinks’ and ‘nextlink’. Make sure to base your template
on pagination/pagination.html end extend the blocks you care about.

	Add support for using multiple paginations on a single page. Simply use
multiple autopaginate/paginate tags. The only limitation is that you must use
paginate before using the next autopaginate tag. For an example see the test
project and the example application inside.

	Simplify building documentation. To build the documentation simply run
setup.py build_sphinx. You will need sphinx installed obviously.

	Simplify running tests. To run tests just invoke setup.py test. That’s all!
This is based on the goodness of django-testproject that simplifies setting
up helper projects just for testing.

Version 1.0.7

	Last release from previous upstream developer.

Index

 nav.xhtml

 Table of Contents

 		
 dj-pagination Documentation

 		
 Installation

 		
 Prerequisites

 		
 Installation Options

 		
 Usage

 		
 How to use dj-pagination

 		
 Custom pagination templates

 		
 Multiple paginations per page

 		
 A Note About Uploads

 		
 Optional Settings

 		
 Version History

 		
 Version 2.4.0

 		
 Version 2.3.3

 		
 Version 2.3.2

 		
 Version 2.3.1

 		
 Version 2.3.0

 		
 Version 2.0.4

 		
 Version 2.0.2

 		
 Version 2.0.1

 		
 Version 2.0

 		
 Version 1.0.7

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

